If it's not what You are looking for type in the equation solver your own equation and let us solve it.
96x+16x^2=24
We move all terms to the left:
96x+16x^2-(24)=0
a = 16; b = 96; c = -24;
Δ = b2-4ac
Δ = 962-4·16·(-24)
Δ = 10752
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{10752}=\sqrt{256*42}=\sqrt{256}*\sqrt{42}=16\sqrt{42}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(96)-16\sqrt{42}}{2*16}=\frac{-96-16\sqrt{42}}{32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(96)+16\sqrt{42}}{2*16}=\frac{-96+16\sqrt{42}}{32} $
| 15/x-1=1/3 | | 5n+34=-8 | | 3x+10-6=x | | 6(f-1)=4(1=2f) | | -2(x+5)+3=-7 | | 3x-10-6=x | | -35=2(u-7)-5u | | 10x=5=6x=25 | | 2.5y2=40 | | 24=96x+16x^2 | | 18d-d+4d-12+d=20 | | x+9+2x-19=50 | | -w+270=97 | | 18d−d+4d−12d+d=20 | | (2x+7)+(15)=(7x-23) | | 4(2x+1=2(3-x) | | 4(2x+1=2(3-x | | 139-w=211 | | 9d+d-8d=16 | | (5x+3)+(6-x)=21 | | x-4=1/3x | | (x+−1^)2=4 | | -w+83=218 | | 8w=w=49 | | 1/4x=x-27 | | y+2y+4y+2y=9 | | 15+26x=4x(8x-2)+19 | | 2x+1200-3x=1020 | | 20(4x-1)^4=0 | | d/2+ 5=6 | | 19x+23=180 | | 70+55x=180+45x |